Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

RF plasma sources for III-nitrides growth : influence of operating conditions and device geometry on active species production and InN film properties

Identifieur interne : 008518 ( Main/Repository ); précédent : 008517; suivant : 008519

RF plasma sources for III-nitrides growth : influence of operating conditions and device geometry on active species production and InN film properties

Auteurs : RBID : Pascal:06-0083122

Descripteurs français

English descriptors

Abstract

The optical emission from an RF inductively coupled plasma source has been monitored at various flow rates and RF powers in the spectral range of 500-900 nm. It was found that low powers and high flow rates resulted in emission from the 1st-positive series of excited molecular nitrogen dominating the spectrum relative to atomic nitrogen. Growth of InN on GaN showed improved electrical properties when the molecular species dominated the spectrum. In contrast, growth of InN on (111) yttrium stabilised zirconia (YSZ) was found to yield films of similar electrical properties at different plasma operating conditions. Reflection high energy electron diffraction (RHEED) patterns were used to monitor the a-lattice constant during growth. Films grown on GaN with higher relative atomic flux were found to relax within the first several nm of growth, whereas films grown with higher molecular nitrogen species did not fully relax until approximately 50 nm of growth. These observations suggest that the active nitrogen species plays a significant role in determining how strain is accommodated during InN epitaxy.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:06-0083122

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">RF plasma sources for III-nitrides growth : influence of operating conditions and device geometry on active species production and InN film properties</title>
<author>
<name sortKey="Anderson, P A" uniqKey="Anderson P">P. A. Anderson</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Electrical and Computer Engineering, The MacDiarmid Institute for Advanced Materials and Nanotechnology, University of Canterbury</s1>
<s2>Christchurch</s2>
<s3>NZL</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Nouvelle-Zélande</country>
<wicri:noRegion>Christchurch</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Reeves, R J" uniqKey="Reeves R">R. J. Reeves</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Physics and Astronomy, The MacDiarmid Institute for Advanced Materials and Nanotechnology, University of Canterbury</s1>
<s2>Christchurch</s2>
<s3>NZL</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Nouvelle-Zélande</country>
<wicri:noRegion>Christchurch</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Durbin, S M" uniqKey="Durbin S">S. M. Durbin</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Electrical and Computer Engineering, The MacDiarmid Institute for Advanced Materials and Nanotechnology, University of Canterbury</s1>
<s2>Christchurch</s2>
<s3>NZL</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Nouvelle-Zélande</country>
<wicri:noRegion>Christchurch</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">06-0083122</idno>
<date when="2006">2006</date>
<idno type="stanalyst">PASCAL 06-0083122 INIST</idno>
<idno type="RBID">Pascal:06-0083122</idno>
<idno type="wicri:Area/Main/Corpus">009476</idno>
<idno type="wicri:Area/Main/Repository">008518</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0031-8965</idno>
<title level="j" type="abbreviated">Phys. status solidi, A, Appl. res.</title>
<title level="j" type="main">Physica status solidi. A. Applied research</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Electrical conductivity</term>
<term>Epitaxy</term>
<term>Gallium nitrides</term>
<term>Indium nitrides</term>
<term>Inductively coupled plasma</term>
<term>Lattice parameters</term>
<term>Monitoring</term>
<term>Nitrides</term>
<term>Operating mode</term>
<term>Photoluminescence</term>
<term>RHEED</term>
<term>Sputter deposition</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Mode opératoire</term>
<term>Plasma couplé inductivement</term>
<term>Conductivité électrique</term>
<term>RHEED</term>
<term>Paramètre cristallin</term>
<term>Epitaxie</term>
<term>Photoluminescence</term>
<term>Dépôt pulvérisation</term>
<term>Monitorage</term>
<term>Nitrure</term>
<term>Indium nitrure</term>
<term>Gallium nitrure</term>
<term>8115C</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The optical emission from an RF inductively coupled plasma source has been monitored at various flow rates and RF powers in the spectral range of 500-900 nm. It was found that low powers and high flow rates resulted in emission from the 1st-positive series of excited molecular nitrogen dominating the spectrum relative to atomic nitrogen. Growth of InN on GaN showed improved electrical properties when the molecular species dominated the spectrum. In contrast, growth of InN on (111) yttrium stabilised zirconia (YSZ) was found to yield films of similar electrical properties at different plasma operating conditions. Reflection high energy electron diffraction (RHEED) patterns were used to monitor the a-lattice constant during growth. Films grown on GaN with higher relative atomic flux were found to relax within the first several nm of growth, whereas films grown with higher molecular nitrogen species did not fully relax until approximately 50 nm of growth. These observations suggest that the active nitrogen species plays a significant role in determining how strain is accommodated during InN epitaxy.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0031-8965</s0>
</fA01>
<fA02 i1="01">
<s0>PSSABA</s0>
</fA02>
<fA03 i2="1">
<s0>Phys. status solidi, A, Appl. res.</s0>
</fA03>
<fA05>
<s2>203</s2>
</fA05>
<fA06>
<s2>1</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>RF plasma sources for III-nitrides growth : influence of operating conditions and device geometry on active species production and InN film properties</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>ANDERSON (P. A.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>REEVES (R. J.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>DURBIN (S. M.)</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Electrical and Computer Engineering, The MacDiarmid Institute for Advanced Materials and Nanotechnology, University of Canterbury</s1>
<s2>Christchurch</s2>
<s3>NZL</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Department of Physics and Astronomy, The MacDiarmid Institute for Advanced Materials and Nanotechnology, University of Canterbury</s1>
<s2>Christchurch</s2>
<s3>NZL</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA20>
<s1>106-111</s1>
</fA20>
<fA21>
<s1>2006</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>10183A</s2>
<s5>354000134781940140</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2006 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>23 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>06-0083122</s0>
</fA47>
<fA60>
<s1>P</s1>
<s2>C</s2>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Physica status solidi. A. Applied research</s0>
</fA64>
<fA66 i1="01">
<s0>DEU</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>The optical emission from an RF inductively coupled plasma source has been monitored at various flow rates and RF powers in the spectral range of 500-900 nm. It was found that low powers and high flow rates resulted in emission from the 1st-positive series of excited molecular nitrogen dominating the spectrum relative to atomic nitrogen. Growth of InN on GaN showed improved electrical properties when the molecular species dominated the spectrum. In contrast, growth of InN on (111) yttrium stabilised zirconia (YSZ) was found to yield films of similar electrical properties at different plasma operating conditions. Reflection high energy electron diffraction (RHEED) patterns were used to monitor the a-lattice constant during growth. Films grown on GaN with higher relative atomic flux were found to relax within the first several nm of growth, whereas films grown with higher molecular nitrogen species did not fully relax until approximately 50 nm of growth. These observations suggest that the active nitrogen species plays a significant role in determining how strain is accommodated during InN epitaxy.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B80A15C</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Mode opératoire</s0>
<s5>02</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Operating mode</s0>
<s5>02</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Método operatorio</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Plasma couplé inductivement</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Inductively coupled plasma</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Conductivité électrique</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Electrical conductivity</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>RHEED</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>RHEED</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Paramètre cristallin</s0>
<s5>06</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Lattice parameters</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Epitaxie</s0>
<s5>07</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Epitaxy</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Photoluminescence</s0>
<s5>08</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Photoluminescence</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Dépôt pulvérisation</s0>
<s5>09</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Sputter deposition</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Monitorage</s0>
<s5>11</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Monitoring</s0>
<s5>11</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Monitoreo</s0>
<s5>11</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Nitrure</s0>
<s2>NA</s2>
<s5>15</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Nitrides</s0>
<s2>NA</s2>
<s5>15</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Indium nitrure</s0>
<s2>NK</s2>
<s5>16</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Indium nitrides</s0>
<s2>NK</s2>
<s5>16</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Gallium nitrure</s0>
<s2>NK</s2>
<s5>17</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Gallium nitrides</s0>
<s2>NK</s2>
<s5>17</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>8115C</s0>
<s4>INC</s4>
<s5>60</s5>
</fC03>
<fN21>
<s1>051</s1>
</fN21>
</pA>
<pR>
<fA30 i1="01" i2="1" l="ENG">
<s1>European Materials Research Society (E-MRS) Fall Meeting</s1>
<s3>Warsaw POL</s3>
<s4>2005-09-05</s4>
</fA30>
</pR>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 008518 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 008518 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:06-0083122
   |texte=   RF plasma sources for III-nitrides growth : influence of operating conditions and device geometry on active species production and InN film properties
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024